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Abstract
We present a method for computing the spectrum of large powers of the
Laplacian in a bounded domain restricting ourselves to the one- and three-
dimensional cases. Since it does not seem possible to obtain information
on the eigenvalues directly from the transcendental equation that gives the
spectrum, we introduce a Wallis-inspired method. We obtain the expansion of
the eigenfunction and the eigenvalues in power series where the inverse of the
power at which the Laplacian is raised plays the role of the small parameter.
We compare these eigenvalues to those obtained through a simple variational
approach and remark that the latter offers an excellent approximation to the
exact result.

PACS numbers: 02.60.Lj, 02.30.Tb

The eigenvalues and eigenfunctions of real symmetric operators are rarely given by explicit
expressions. In most cases one has to rely on various approximation schemes and asymptotic
methods in order to obtain quantitative results. Among the many asymptotics that have been
investigated (predominantly the limit of highly excited modes, to use the terminology of
quantum mechanics as elsewhere in this communication), the one of a very large power of the
Laplacian, if one considers the problem of eigenvalues of differential operators in bounded
domains, seems to have been overlooked.

The present communication addresses this question in a simple setting. We begin by
considering the one-dimensional eigenvalue problem of the Nth power of the Laplacian
operator:

d2N

dx2N
u = (−1)Nλ2Nu. (1)

The boundary conditions to be satisfied by the eigenfunction u are u(j)(±1) = 0 for
j = 0, . . . , (N − 1) and u(j) stands for the j th derivative of u. Given the invariance of (1) and
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its boundary conditions under the symmetry x → −x, the eigenfunctions are characterized
by a definite parity i.e., u(−x) = ±u(x). In order to simplify the approach we shall consider
separately the spectrum of (1) for the even and odd eigenfunctions.

The case N = 1 is elementary. For the even part of the spectrum the (unnormalized)
eigenfunction is just u = cos λx. The boundary condition is cos λ = 0, leading to the
spectrum λk = π

2 + kπ where λ0 is the ground state with k numbering the excited states within
the even parity spectrum.

For N = 2, equation (1) reads u′′′′ = λ4u, leading to an (even) eigenfunction of the form
u = cos λx + a cosh λx. Implementing the boundary conditions u(±1) = u′(±1) = 0 we find
a = −cos λ/ cosh λ = sin λ/ sinh λ leading to the equation for the spectrum tan λ + tanh λ = 0.
While the whole spectrum cannot be obtained analytically, its asymptotic form for large k is
λk = 3π

4 + kπ since tanh λk will rapidly approach unity.
For higher, but moderate values of N, we can obtain, with the help of computer algebra, the

equation for the spectrum, which involves trigonometric and hyperbolic functions. We have
indeed performed this study for values of N up to 10 and obtained numerically the eigenvalues.
They converge very rapidly when k increases to their asymptotic value λk = (N+1)π

4 + kπ .
In particular for N = 10 we have obtained the following values for 4λ/π : 10.748, 14.966,
19.995, 22.999, . . . . The convergence to the asymptotic values N + 1 + 4k is exponential (and,
in fact, even the ground state is not very far from the estimate 11). An even more spectacular
convergence is obtained for N = 2, where we found for 4λ/π : 3 + 1 × 10−2, 7 + 2 × 10−5,
11 + 4 × 10−8, 15 + 7 × 10−11, again an exponential convergence. This can be understood
from the structure of the exact eigenfunction by isolating the dominant contribution. It turns
out that in all cases the ratio of two consecutive departures of the calculated 4λ/π from the
predicted integers decreases by a factor of order of magnitude exp

(
2π sin π

N

)
.

What is particularly interesting is that the one-dimensional approach can be easily
extended to the study of the higher powers of the Laplacian in a three-dimensional spherical
domain. Starting from the spherical Laplacian

�w = 1

r

d2

dr2
(rw) − L(L + 1)

r2
w (2)

we see that if we define the function u = rw, one can write the eigenfunction of the Nth power
of the Laplacian in terms of u as(

d2

dr2
− L(L + 1)

r2

)N

u = (−1)Nλ2Nu. (3)

The set of boundary conditions u(j)(1) = 0 for j = 0 · · · (N − 1) (where u(j) stands for the
j th derivative of u with respect to r) is equivalent to the set w(j)(1) = 0 for j = 0 · · · (N − 1).
We remark readily that the centrifugal term is absent when L = 0 (and also when L = −1).
In the L = 0 case the problem coincides, on the half-positive axis, with the one-dimensional
one. However, one notes that while the L = 0 eigenfunction w does not vanish at the origin,
the auxiliary variable u = rw does, with a nonzero derivative. With this boundary condition,
this corresponds to an odd solution of the one-dimensional problem. For instance, in the
N = 1 case, the eigenfunctions of the Laplacian for L = 0 are w = sin λr

r
, corresponding

to u = sin λr , which is the odd eigenfunctions in the one-dimensional case. So we can
lump the treatment of the latter case together with the spherical case L = 0. It turned out
that we can present a unified description of our results for the even eigenfunctions in the
one-dimensional case together with the spherical case by formally giving to L the value −1.
The odd one-dimensional case is identical to the L = 0 spherical case, as explained above.



Fast Track Communication F393

The problem we will consider is therefore �Nu = (−1)Nλ2Nu where the Laplacian is now
defined as � = d2

dx2 − L(L+1)

x2 , L = −1 corresponding to the even one-dimensional case.
Although this cannot be completely excluded, there seems to be little hope to get

any information on the spectrum by looking at the behaviour of the large-N limit of the
transcendental equation that yields directly the eigenvalues. So we shall instead consider
the problem by a Wallis-inspired [1] method, namely by looking at the Taylor expansion of the
eigenfunctions near x = 0 and by writing the eigenproblem as a condition for the coefficients
of this expansion.

We start by introducing a variational problem which allows us to obtain a good
approximation to the ground-state eigenvalue. We consider the functional I = ∫ 1

−1(�
NU −

EU)2 dx for the test function U in the one-dimensional case, and I = 4π
∫ 1

0 (�NU −EU)2 dr

in the spherical case, where the r2 term in the volume element has been absorbed into the change
of variables to the auxiliary U = rW . Given the symmetry property of the eigenfunctions
(either odd or even), the one-dimensional case can be rewritten as I = 2

∫ 1
0 (�NU −EU)2 dx.

Because a fixed prefactor plays no role in a variational problem, both cases can be unified
into the single form I = ∫ 1

0 (�NU − EU)2 dx where it is understood that x stands for r in the
spherical case. Minimizing the functional with respect to the eigenvalue E we obtain

E =
∫ 1

0 U(�NU) dx∫ 1
0 U 2 dx

. (4)

Next we introduce the appropriate test function. For the one-dimensional even case, we
choose U = (1 − x2)N . We remark readily that it satisfies the boundary conditions: it
vanishes, together with its (N − 1) first derivatives, at x = ±1. For the odd case we will
use U = x(1 − x2)N . Note that it is just x (which, we remind the reader, represents r in the
spherical case) multiplying an appropriate function W = (1 − x2)N for the L = 0 spherical
case, and as expected this U is just the appropriate auxiliary function in that case. For general
values of L, a test function, in terms of W , should be W = xL(1 − x2)N , corresponding
to U = xL+1(1 − x2)N . The same expression is thus valid for all cases, including the one-
dimensional even case represented by L = −1. Using this expression the variational estimate
Ẽ0 for the ground-state energy E0 can be computed in closed form. We find

Ẽ0 = (2N)!
(2N)!!

(2N − 1)!!

(4N + 2L + 3)!!

(4N)!!(2L + 1)!!(2N + 2L + 3)
(5)

where we take the usual definition (−1)!! = 0!! = 1. It is perhaps more interesting to give an
approximate but simpler expression for Ẽ0 using the Stirling formula for some of the factorials
that appear in (5). We obtain thus

Ẽ0 =
√

2(2N)!
(4N)L+1

(2L + 1)!!

(
1 +

4L2 − 7

16N
+

α(L)

512N2
+ · · ·

)
(6)

where α(L) = 16L4 − 64
3 L3 + 72L2 + 1552

3 L + 465.
While the variational eigenfunction is a very good approximation of the true one, it remains

that it is still approximate. In order to obtain a more precise estimate of the eigenfunction
u, we introduce a corrective factor � such that uN,L(x) = UN,L(x)�N,L(x) where � is a
slowly varying function of x, which will be found to be, at leading order in 1/N , a function
of x2/N . We thus expand �N,L(x) in a series in powers of 1/N involving auxiliary functions
�N,L(x) = ∑∞

i=0 N−iφL,i(x
2/N). Next we expand φi(x

2/N) in a formal power series in
x2/N : φL,i(x

2/N) = ∑∞
m=0 aL,i,m

(
x2

N

)m
. The idea behind this two-staged expansion will

become clearer in what follows. At a given L and for each value of i, the aL,i,m satisfy an
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infinite number of linear equations (in general, nonhomogeneous) provided the aL,j,m are
known for j < i.

For L = −1 and i = 0 we have (dropping the index L = −1)

(−1)N�N(1 − x2)Nφ0(x
2/N) = E0(1 − x2)N(φ0(x

2/N) + O(1/N)). (7)

The logic we used is the following. On the left-hand side, we rewrite (−1)N(1 − x2)N as
(x2 −1)N and expand it as

∑
p(−1)p(Np )x2(N−p). The summation is only on (N + 1) terms but

we assume N very large and treat the sum as infinite. Also, we expand each binomial factor
as

(
p

N

) = Np

p!

(
1 − p(p−1)

2N
+ · · · ). So the left-hand side of equation (7) is, at leading order

�N

(∑
p

(−1)p
Np

p!
x2(N−p)

) ( ∞∑
m=0

a0,m

(
x2

N

)m
)

.

All powers of x less than 2N are annihilated by the Nth power of the Laplace operator and can
be ignored. The coefficient of x2(N+r) is obtained by choosing, in the second sum, the value
m = p + r . So the relevant quantity is

�N
∑

r

x2(N+r )

Nr

(∑
p

(−1)p
a0,p+r

p!

)
=

∑
r

(2N + 2r)!

Nr(2r)!
x2r

(∑
p

(−1)p
a0,p+r

p!

)
.

At leading order, the 2r factors beyond 2N in (2N + 2r)! can be identified to just (2N)2r .
(Subdominant terms in 1/N will enter, as inhomogeneous terms, into the equations for the
ai,m, i > 0.) On the right-hand side we expand in the same way (1 − x2)N as

∑
r (−1)r Nr

r! x2r .
Here, at leading order, only the first term in φ0, namely a0,0, is needed. Comparing the powers
of x2r we have to solve

(2N)!
22r

(2r)!

(∑
p

(−1)p
a0,p+r

p!

)
= (−1)r

r!
E0a0,0. (8)

We found that all these (homogeneous) equations are satisfied by the quantities a0,m =
(−1)m (2m−1)!!

22m for the eigenvalue E0 = √
2(2N)! where we normalize with a0,0 = 1. The

case r = 0 just means that
∑

p
(2p−1)!!

22pp! = √
2, and indeed one can recognize the expansion of

(1+y)−1/2 for y = −1/2. It is elementary to see that similar expansions prove that the equations
for all r are satisfied too. The series for φ0 is asymptotic, but it can be Borel resummed. From
the well-known expression of the error function, we find that φ0 = √

πz ez2
(1 − erf(z)) where

z = √
2N/x. All corrective terms in 1/Ni enter, as inhomogeneous terms, into the infinite

system of equations for the ai,m, i > 0.
For higher values of L we find that aL,0,m = (−1)m (2m+2L+1)!!

22m (and the equations being
linear we do not have to normalize to aL,0,0 = 1 for L > 0). The coefficients aL,0,m for each L
turn out to be the building blocks for the construction of the aL,i,m for all values of i (and also,
as we will explain below, of the excitation degree k). Indeed, we are able to write the aL,i,m as
the product of the aL,0,m multiplied by a polynomial in m of degree 2i, provided we also expand
the eigenvalue in powers of 1/N around the zeroth-order value

√
2(2N)!(4N)L+1/(2L + 1)!!.

The infinitely many equations will be satisfied by the aL,i,m by finding just the (finite number
of) coefficients of this polynomial plus the correction to the eigenvalue at that order. For
instance we find that aL,1,m = −aL,0,mm(m− 2L− 6)/4 (the first correction to the eigenvalue
appearing in equation (9)).

In practice the calculations do become cumbersome beyond a certain order. We have thus
limited our calculations to fourth order for L = −1, and to second order for L � 0, for a
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sufficiently large number of L’s to convince ourselves that we found the correct expansion of
the eigenvalue. We found

E0 =
√

2(2N)!
(4N)L+1

(2L + 1)!!

(
1 +

4L2 − 7

16N
+

β(L)

512N2
+ · · ·

)
(9)

where β(L) = 16L4 − 64
3 L3 − 56L2 + 400

3 L + 177. Thus the variational expression we found
above coincides with the exact value up to the first order in 1/N , the relative difference
appearing only at order 1/N2, with value, at that order:

Ẽ0

E0
− 1 = α(L) − β(L)

512N2
= (2L + 3)2

16N2
.

For the case L = −1 we have computed two more orders and found

E0 =
√

2(2N)!

(
1 − 3

16N
+

25

512N2
+

375

8192N3
− 8197

524 288N4
+ · · ·

)
. (10)

We can give the expression of the first four ai,m for the case L = −1 in terms of a0,m

given above:

a1,m = −a0,mm(m − 4)/4

a2,m = a0,mm(3m3 − 68m2 + 36m − 1)/96

a3,m = −a0,mm(m5 − 56m4 + 312m3 + 143m2 + 218m − 1392)/384

a4,m = a0,mm(15m7 − 1560m6 + 27 320m5 − 30 942m4 − 13 120m3 − 59 880m2

− 97 915m − 31 638)/92160.

The case of the excited states can be treated along the same lines. In addition to the slowly
varying factor � we need an extra corrective factor, namely a function � of Nx2. The latter
is just a polynomial in x2 of degree exactly k, the coefficients of which must be expanded in
powers of 1/N (the coefficient of x2p starting as Np), the number of needed terms depending
on the desired value of i. So for a given value of i the total number of unknowns to be computed
is always finite: the polynomial giving ai,m is now of degree 2i + 2k and we also need the
expansions of both � and the eigenvalue. This will be treated in a future publication. Let us
just give the preliminary result for the first excited state for L = −1 up to first order in 1/N .
The eigenvalue at this order is

E1 = 8N2
√

2(2N)!

(
1 − 15

16N

)
. (11)

Here we do not have a variational expression to compare it to. We find a
(k=1)
0,m = a

(k=0)
0,m (2m2 +

3m + 1), a
(k=1)
1,m = −a

(k=0)
0,m (2m2 + 3m + 1)m(m − 8)/4 and in that case � = (1 − x2(4N +

3 + · · ·)) where the degree in x is just 2 but the expansion in 1/N extends to infinity. Only
the terms written here are needed to compute a

(k=1)
1,m and the eigenvalue at the order given

above.
In this communication we have considered the problem of finding the eigenvalues and

eigenfunctions of a large power of the Laplacian. We have presented its solution in the case of
the lowest eigenvalue (‘ground state’ in the quantum-mechanical terminology). The study of
the excited states will be the subject of some future publication. Our presentation was limited
here to the analysis of the one- and three-dimensional cases but our method can easily be
extended to the case of an arbitrary bounded domain with Dirichlet boundary conditions. We
plan to return to this question in some future work. Finally, the convergence of the expansions
of the eigenvalues and eigenfunctions has not been addressed in this work and remains an
open problem which, we hope, might stimulate the readers of this communication.



F396 Fast Track Communication

Acknowledgment

One of the authors (YP) is grateful to M Greenlee for interesting discussions.

References

[1] Wallis J 1656 Arithmetica Infinitorum (Oxford: Oxford University Press)


	
	Acknowledgment
	References

